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THE MARKOV CHAIN MONTE CARLO
METHOD: AN APPROACH
TO APPROXIMATE COUNTING
AND INTEGRATION

Mark Jerrum Alistair Sinclair

In the area of statistical physics, Monte Carlo algorithms
based on Markov chain simulation have been in use for
many years. The validity of these algorithms depends cru-
cially on the rate of convergence to equilibrium of the
Markov chain being simulated. Unfortunately, the classical
theory of stochastic processes hardly touches on the sort of
non-asymptotic analysis required in this application. As a
consequence, it had previously not been possible to make
useful, mathematically rigorous statements about the qual-
ity of the estimates obtained.

Within the last ten years, analytical tools have been
devised with the aim of correcting this deficiency. As well
as permitting the analysis of Monte Carlo algorithms for
classical problems in statistical physics, the introduction of
these tools has spurred the development of new approxi-
mation algorithms for a wider class of problems in combi-
natorial enumeration and optimization. The “Markov chain
Monte Carlo” method has been applied to a variety of such
problems, and often provides the only known efficient (i.e.,
polynomial time) solution technique.
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e
INTRODUCTION

-

This chapter differs from the others in being concerned more with problems of count-
ing and integration, and correspondingly less with optimization. The problems we ad-
dress still tend to be complete, but now for the complexity class of counting problems
known as #P, rather than for the more familiar class NP of decision problems. It also
differsfrom most of the othersin being centred around a general paradigm for design-
ing approximation algorithms, rather than around a specific problem domain. We shall
refer to this paradigm as the “Markov chain Monte Carlo method.” It has been widely
used for many yearsin several application areas, most notably in computational physics
and combinatorial optimization. However, these algorithms have been almost entirely
heuristic in nature, in the sense that no rigorous guarantees could be given for the qual-
ity of the approximate solutionsthey produced. Only relatively recently have analytical
tools been devel oped that allow Markov chain Monte Carlo algorithmsto be placed on a
firm foundation with precise performance guarantees. Thishasled to an upsurge of inter-
estinthisareain computer science, and in the development of thefirst provably efficient
approximation algorithmsfor severa fundamental computational problems. This chap-
ter aimsto describe these new tools, and give the reader aflavor of the most significant
applications.

The Markov chain Monte Carlo method provides an algorithm for the following
general computational task. Let 2 beavery large (but finite) set of combinatorial struc-
tures (such as the set of possible configurations of a physical system, or the set of fea-
sible solutions to a combinatorial optimization problem), and let = be a probability
distribution on £2. The task is to sample an element of 2 at random according to the
distribution 7.

In addition to their inherent interest, combinatorial sampling problems of this kind
have many computational applications. The most notable of these are the following:

|. Approximate counting: i.e., estimate the cardinality of £2. A natural generaliza-
tion is discrete integration, where the goal is to estimate a weighted sum of the
form )", o w(X), where w isapositive function defined on £2.

I1. Satistical physics: here §2 isthe set of configurations of a statistical mechanical
system, and r isanatura probability distribution on £2 (such asthe Gibbs dis-
tribution), in which the probability of aconfigurationisrelated to its energy. The
task isto sample configurationsaccording to i, in order to examine properties of
a“typical” configuration and to estimate the expectations of certain natural ran-
dom variables(such asthe mean energy of aconfiguration). Computationsof this
kind are typically known as“Monte Carlo experiments.”

I11. Combinatorial optimization: here §2 is the set of feasible solutions to an opti-
mization problem, and r isadistributionthat assigns, in somenatural way, higher
weight to solutionswith abetter objective function value. Sampling from r thus
favors better solutions. An example of this approach is the popular optimization
heuristic known as “simulated annealing.”
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In all the above applications, more or less routine statistical proceduresare used to infer
the desired computational information from a sequence of independent random samples
fromthe distribution 7. (This point will beillustrated by exampleslater in the chapter.)
In algorithms of this kind, therefore, it is the sampling itself which presents the major
challenge.

The Markov chain Monte Carlo method solves the sampling problem as follows.
We construct a Markov chain having state space £2 and stationary distribution 7. The
Markov chain is designed to be ergodic, i.e., the probability distribution over £2 con-
verges asymptotically to x, regardless of the initial state. Moreover, its transitions cor-
respond to simple random perturbations of structures in £2, and hence are simple to
simulate. Now we may sample from = asfollows: starting from an arbitrary statein £2,
simulate the Markov chain for some number, T, of steps, and output the final state. The
ergodicity meansthat, by taking T large enough, we can ensure that the distribution of
the output state is arbitrarily close to the desired distribution 7.

In most applicationsit is not hard to construct a Markov chain having the above
properties. What isnot at al obvious, however, is how to choose the number of simula-
tion steps T, whichisthe crucial factor in the running time of any algorithm that usesthe
chain. Of coursg, if the algorithm is to be efficient, then T must be very much smaller
than the size of §2; equivalently, we requirethat the Markov chain be closeto its station-
ary distribution after taking a very short random walk through 2. Loosely, we shall call
aMarkov chain having this property “rapidly mixing,” and the number of steps required
for the distribution to become close to = the “mixing time” of the chain.

In heuristic applicationsof the Markov chain Monte Carlo method, T isusually cho-
sen by empirical observation of the Markov chain, or by an appeal to combinatorial or
physical intuition. This meansthat no precise claim can be made about the distribution
of the samples, so no performance guarantee can be given for the associated approxima-
tion algorithms. This observation holdsfor aimost all existing Monte Carlo experiments
in physics, and for almost al applications of ssmulated annealing in combinatorial opti-
mization. It is a considerable challenge for theoretical computer science to analyze the
mixing timein such applications, and hence to place these algorithms on a firm founda-
tion.

Unfortunately, the classical theory of stochastic processes hardly touches upon the
sort of non-asymptotic analysisrequiredin thissituation. In recent years, however, novel
analytical toolshavebeen devel oped that allow the mixing time of Markov chainsof this
kind to be determined quite precisely. Thisin turn has led to the first rigorous analysis
of the running time of various approximation algorithms based on the Markov chain
Monte Carlo method, as well as to the design of entirely new agorithms of this type.
This chapter aims to present some of these analytical tools, and to describe their most
important algorithmic applications.

The remainder of the chapter is organized as follows. Section 12.2 illustrates how
the Markov chain Monte Carlo method can be applied to a combinatorial problem that
is very simple to state, namely the problem of counting the number of solutions to an
instance of the Knapsack problem. Section 12.3 describes two tools for bounding the
mixing time of Markov chains that have proved successful in a number of applications
(thoughnot asyet in the case of the Knapsack solution counting problem). Anillustration
of how these tools might be applied is provided by atoy example, which isaradicaly
simplified version of the Knapsack problem. Section 12.4 introduces a more substantial
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and better motivated application drawn fromthefield of statistical physics, namely, esti-
mating the partition function of a monomer-dimer system. This computational problem
includes, asaspecial case, approximately counting matchingsof all sizesin agraph. Sec-
tion 12.5then catal oguesvariousother problemsto which the Markov chain Monte Carlo
method has been successfully applied. The concluding Section 12.6 formulatesthe sim-
ulated annealing heuristic as an instance of the Markov chain Monte Carlo method, and
indicates how the techniques described in Sections 12.3 and 12.4 can, in certain cases,
give rigorous results on the performance of the heuristic.

—
AN ILLUSTRATIVE EXAMPLE

[

To introduce and motivate the Markov chain Monte Carlo method, consider the fol-
lowing problem: given a = (ag, ... ,a,_1) € N" and b € N, estimate the number N of
0,1-vectors x € {0, 1}" satisfying the inequdity a-x = Zi”;ola;xi < b. If the vector a
givesthe sizes of n itemsto be packed into a knapsack of capacity b, the quantity to be
estimated can beinterpreted asthe number of combinationsof itemsthat can befitted into
the knapsack, which we shall refer to as “ Knapsack solutions.” Although this problem
is perhapsnot of pressing practical importance, it does provide a convenient demonstra-
tion of the method. No efficient deterministic algorithmisknown for accurately counting
Knapsack solutionsand thereis convincing complexity-theoretic evidence that none ex-
ists. Inthisregard at least, the chosen exampleismorerealistic than thefamiliar classical
demonstration of the M onte Carlo method, whichinvolvesestimating r by casting anee-
dle onto aruled surface [Usp37].

The nature of the “convincing evidence” mentioned above is that the problem
of counting Knapsack solutions is complete for Valiant’s complexity class #P [GJ79,
Val79b] with respect to polynomial-time Turing reductions. The class#P isthe counting
anal ogue of the more familiar class NP of decision problems. A #P-completeproblemis
computationally equivalent (via polynomial-time Turing reductions) to computing the
number of satisfying assignments of a boolean formulain CNF, or the number of ac-
cepting computations of a polynomial-time nondeterministic Turing machine. Obvi-
ously, computing the number of accepting computationsis at least as hard as deciding
whether an accepting computation exists, so #P certainly contains NP. Less obviously,
as Toda [Tod89] has demonstrated, #P also essentidly contains the entire
Meyer-Stockmeyer polynomial-time hierarchy. Thus, in structural terms, and maybe
in fact, a #P-complete problem is computationally even harder than an NP-complete
one [Jer94].

A classical Monte Carlo approach to solving the K napsack problem would be based
on an estimator of the following type. Select uniformly at random (u.ar.) a vector x €
{0, 1}" from the corners of the n-dimensional boolean hypercube; if a- x < b then re-
turn 2", otherwise return 0. The outcome of this experiment is arandom variable whose
expectation is precisely N, the value we are required to estimate. In principle, we need
only perform sufficiently many trials and take the mean of theresultsto obtain areliable
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approximation to N within any desired accuracy. In practice, the method fails badly, as
we can see by takinga = (1,...,1) and b = n/3. Note that, with these values, the ex-
pected number of trials before the first non-zero outcome is exponentia in n. Thus, a
sequence of trials of “reasonable” length will typically yield a mean of 0, even though
the actual number of Knapsack solutionsis exponentially large. Clearly, the variance of
the estimator isfar too large for it to be of any practical value.

Before considering other, potentially better approaches, we should pause to con-
sider what distinguishes a good algorithm from a bad one. In the theoretical computer
science tradition, we consider an efficient algorithm to be one that terminatesin a num-
ber of steps that is bounded by a polynomial in the length of the input. More formally,
suppose f : ¥* — N isafunction mapping problem instances (encoded as words over
some convenient alphabet X) to natural numbers. For example, in the case of the Knap-
sack problem, f might map (encodings of) the pair a € N" and b € N to the number of
solutionsof a-x <bintheset x € {0, 1}". It should be clear that any combinatorial enu-
meration problem can be cast in this framework. A randomized approximation scheme
for f isarandomized algorithm that takes asinput aword (instance) x € X" and ¢ > 0,
and produces as output a number Y (arandom variable) such that?

Pril-of<Y=<d+e)fx)=3. (12.1)

A randomized approximation schemeis said to be fully polynomial [KL83] if it runsin
time polynomial in n (theinput length) and e ~*. We shall abbreviatethe rather unwieldy
phrase “ Fully Polynomia Randomized Approximation Scheme” to FPRAS.

The above providesa clear-cut definition of an “efficient approximation algorithm”
that has at least a certain degree of intuitive appeal. The naive Monte Carlo algorithm
described earlier is not efficient in the FPRAS sense, which is reassuring. On the other
hand, it is certainly debatable whether an algorithm with running time n° congtitutes an
efficient solution in anything other than a theoretical sense. In this chapter, we always
use the FPRAS as our notion of efficient approximation algorithm; while this has the
advantage of providing us with clear goals, it is obvious that in practical applications
some more demanding notion of “ efficient approximation” would be necessary.

Returning to the Knapsack problem, we might try applying the Markov chain Monte
Carlo method as follows. Consider the Markov chain 9tk ng With state space 2 = {x €
{0,1}":a-x < b}, i.e, theset of al Knapsack solutions, and transitions from each state
X = (Xo, ..., Xn_1) € §2 defined by the following rule;

I with probability 3 let y = x; otherwise,

Il. selecti u.ar. fromtherangeO<i <n—1landlety =
(X0, v+ s Xi—1, L= Xi, Xig1, ..., Xn-1);

. ifa-y <b,thenlety =y’ elselet y =x;

the new state is y. Informally, the process Miknap May be interpreted as a random walk
(with stationary moves) on the boolean hypercube, truncated by the hyperplanea-x = b.

1There is no significance in the constant % appearing in the definition, beyond its lying strictly
between  and 1. Any success probability greater than 3 may be boosted to 1— § for any desired § > 0
by performing asmall number of trials and taking the median of the results; the number of trialsrequired
isO(Ins—1) [JvV86].
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The Markov chain Mkngp IS ergodic, since all pairs of states intercommunicate via
the state (0, ... , 0), and the presence of loops ensures aperiodicity; it is readily checked
that the stationary distributionisuniformover £2. Thisobservationimmediately suggests
a procedure for selecting Knapsack solutions aimost u.ar.: starting in state (0, ..., 0),
simulate Mkngp for sufficiently many steps that the distribution over states is “close”
to uniform, then return as result the current state. Of course, sampling from £2 is not
quite the same as estimating the size of 2 (which is our goa), but the second task can
be related to the first using a simple trick, which we now describe.2

We keep the vector a fixed, but allow the bound b to vary, writing £ (b) and
Mknap(b) to make explicit the dependence of the Markov chain on b. Assume without
lossof generality thatag < a; < -+ < an_1, and definebo = 0and b = min{b, Z'jj)aj 1,
for1<i <n.Itmay easily beverifiedthat |2 (bj_1)| < |2(bi)| < (n+1)|2(bj_1)|, for
1 <i < n, the key observation being that any element of §2(b;) may be converted into
an element of £2(b;_1) by changing the rightmost 1 to a 0. Now write

12(bp)| 12 (bn_1)] 120D o o))

o) — 12
12 b =120 = o X B < 120 (12.2)

where, of course, |£2(bg)| = 1. The reciprocals pi = |$2(bi_1)|/]$2(b;)| of each of the
ratios appearing in (12.2) may be estimated by sampling almost uniformly from £2 (b;)
using the Markov chain Mknap (i), and computing the fraction of the samples that lie
within £2(bi_1).

Consider the random variable associated with a single trial — i.e., one run of the
Markov chain Mknap(bi) — that is defined to be 1 if the final state is a member of
£2(b;_1), and O otherwise. If we were able to simulate Mknap (i) “to infinity,” the ex-
pectation of this random variable would be precisely pi. In reaity, we must terminate
the simulation at some point, thereby introducing a small though definite bias that ought
to be accounted for. To avoid obscuring the main ideas, let usignore this technical com-
plication for the time being; details of this kind will be attended to when we address a
more realistic example in Section 12.4. With the simplifying assumption of zero bias,
the expectation of an individual trial is p;j, and its variance, sinceit isa0,1-variable, is
pi (1= p;). Suppose we performt = 17s~2n? trials, and let X; denote the sample mean.
In analyzing the efficiency of Monte Carlo estimators, the quantity to focusonisthera
tio of the variance of the estimator to the square of its expectation; in this instance we
have

VarYi 1- Pi n 82

2 "ty St Im
where the inequality follows from earlier-noted bound p; = [2(bj_1)|/|2(b)| >
(n+1-1.

Supposethe above processis repeated for each of then ratiosin equation (12.2), and
denoteby Z therandomvariable Z = X, X1 .. X_lwhich isthe product of the various
sample means. Then, since the random variables X; are independent, the expectation

2For a more detailed discussion of the problem of inferring information from observations of a
Markov chain, see[Ald87, Gill93, Kah94].
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of ZiISEZ = pnpn-1...p1=|2(b)|*, and

Vvarz O varX; g2 1" g2
=~ _ 1 <1+ —| —1<=,
(EZ)2 E[ + 2 } —[ +17n:| = 16

assuming e < 1. By Chebyshev’sinequality, thisimplies that
Pr(l-e/2R2M)| ' <Z<A+e/2)|20)] ") =2,

so therandom variable Y = Z~* satisfies (12.1), i.e,, it yields arandomized approxima-
tion schemefor the number of Knapsack solutions. Theideaof expressing the quantity to
be estimated as a product of small factorsin the style of (12.2) and then estimating each
of the factors by separate Monte Carlo experiments, is one that has repeatedly proved
useful in thisarea, sinceit provides ageneral tool for reducing approximate counting to
sampling.

Observe that the total number of trials (Markov chain simulations) used is nt =
17¢72n®, which is polynomial in n and ¢ ~1. The method described above is therefore
an FPRAS for the number of Knapsack solutions, provided the Markov chain Mtknap
is “rapidly mixing,” that is to say, is close to stationarity after a number of steps that
ispolynomial in n. Thisisanon-trivial condition, since the size of the state space £2 is
exponentia inn. Giventherelativesimplicity of the Markov chain 9tkna, it ishumbling
that the question of whether Mk ng israpidly mixing iseven now unresolved. Thewider
guestion of whether there exists an FPRAS of any kind for the Knapsack problem is
also unresolved, though the Markov chain simulation approach sketched above seemsto
offer the best hope. Using it, Dyer et al. [DFKKPV 93] were able to obtain arandomized
approximation scheme for the number of Knapsack solutions whose running time is
e2exp(O(v/n(logn)*/?)), and thisis asymptotically the fastest known.

OPEN PROBLEM 12.1 Isthe Markov chain Mtngp rapidly mixing (i.e., isits mixing
time bounded by a polynomial in the dimension n — see next section) for all choices of
the bound b and item sizesa?

—
TWO TECHNIQUES FOR BOUNDING
THE MIXING TIME

N2

It will be clear from Section 12.2 that successful application of the Markov chain Monte
Carlo method rests on obtaining good bounds on the time taken for a Markov chain to
become close to stationarity.

There are a number of ways of quantifying “closeness’ to stationarity, but they are
all essentially equivalent in this application. Let 9t be an ergodic Markov chain on state
space £2 with transition probabilities P : £22 — [0, 1]. Let x € £2 be an arbitrary state,
and denoteby Pt(x, -) thedistribution of the state at timet giventhat x istheinitia state.
Denote by 7 the stationary distribution of 9t. Then the variation distance at timet with
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respect to the initial state x is defined to be

Ax() =max [P, 9 —7(S)] =3 ) _ [P, y) —7(y)].
yes
Note that the variation distance provides a uniform bound, over all events S C €2, of
the difference in probabilities of occurrence of event S under the stationary and t-step
distributions. Therate of convergence of 9t to stationarity may then be measured by the
function

e (e) = min{t : A (t") <eforalt >t},

which we shall refer to asthe “mixing time” of the Markov chain.

The classical approach to bounding =«(¢) is via a “coupling” argument. This ap-
proach is very successful in the context of highly symmetric Markov chains (e.g., those
associated with card shuffling [Ald81, Dia88]), but seems difficult to apply to the kind
of “irregular” Markov chainsthat arise in the analysis of Monte Carlo algorithms. Two
exceptions are the analyses of Aldous[AId90] and Broder [Bro89] for a Markov chain
on spanning trees of a graph, and of Matthews [Mat91] for a Markov chain related to
linear extensions of a partial order. A glance at the latter paper will give an impression
of the technical complexities that can arise.3

We should point out that the coupling method has very recently shown signs of stag-
ing a comeback. Jerrum [Jer95] has presented a simple application to sampling vertex
colorings of a low-degree graph. Propp and Wilson [PW95] have some novel and at-
tractive thoughts on applying coupling when the state space of the Markov chain has a
natural lattice structure; their ideasare encouraging, and provide one of theingredientsin
Luby, Randall, and Sinclair’s[LRS95] analysis of aMarkov chain on dimer coveringsof
certain planar (geometric) lattice graphs. Also, Bubley, Dyer, and Jerrum [BDJ96] have
applied coupling to demonstraterapid mixing of acertain randomwalk in aconvex body,
adituation we return to in Section 12.5.2. Finally, coupling has been used in a Markov
chain approach to protocol testing by Mihail and Papadimitriou [MP94]. Despite this
activity, it is not yet clear how far the coupling method can be pushed in the analysis of
complex Markov chains.

In this section we consider two recently proposed alternatives to coupling, which
tend to give weaker bounds but which are applicable in a wider range of situations.
Historically [Sin93, SJ89], these two methods were not separate, but were developed
together in a composite approach to bounding z«(¢); however, for practical purposes
it is better to view them now as distinct approaches. We describe the “canonical path”
argument first, and compl etethe section with atreatment of the* conductance” argument.
For further discussion of these approaches, and various refinements of them, see, e.g.,
[DS91, Sin92, DSCI3, Kah9s).

We shall assume throughout the rest of the section that 97t is reversible, that is to
say, satisfies the detailed balance condition:

QX y) =r(X)P(X,y) =n(y)P(y,x), foralx,ye2;
furthermore, we assume the loop probabilities P(x, X) are at least % forall x € £2. Since

3For a more direct approach to this problem, using a conductance argument as described below,
see [KK90].
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the Markov chain 9t is a constructed one, it is not at all difficult to arrange that these
two conditions are met.

12.3.1 CANONICAL PATHS

To describe the canonical path argument, we view 9t as an undirected graph with ver-
tex set £2 and edge set E = {{x,y} € 2@ : Q(x,y) > 0}; this makes sense because of
the reversibility condition. For each (ordered) pair (x, y) € £22, we specify a canonical
path yyy from x to y in the graph (£2, E); the canonical path yyy correspondsto a se-
guence of legal transitionsin 91 that leads from initial state x to final state y. Denote by
I' ={yxy : X,y € £2} theset of al canonical paths. For the method to yield good bounds,
it isimportant to choose aset of paths I'" that avoidsthe creation of “hot spots.” edges of
the graph that carry a particularly heavy burden of canonical paths. The degreeto which
an even loading has been achieved is measured by the quantity

p=p(I)= 7 (X)7 (V) yxyls

max ——

e Q) =,
where the maximum is over oriented edges e of (£2, E), and |y«y| denotes the length of
the path yxy.

Intuitively, we might expect a Markov chain to be rapidly mixing if it contains no
“bottlenecks,” i.e., if it admits a choice of pathsT" for which p(I") is not too large. This
intuition is formalized in the following result from Sinclair [Sin92], which is a dight
modification of atheorem of Diaconisand Stroock [DS91].

PROPOSITION 12.1 Let M be afinite, reversible, ergodic Markov chain with loop
probabilities P(x, X) > % forall statesx. Let I beaset of canonical pathswith maximum
edge loading p = p(I"). Then the mixing time of Mt satisfies 74 (¢) < p(INmT(X)~* +
Ine~1), for any choice of initial state x.4

Proof. Combine Proposition 1 of [Sin92] and Theorem 5 of [Sin92]. [ ]

We demonstrate the canonical path method by applying it to aradically simplified
version of the Knapsack Markov chain from Section 12.2. Instead of arandom walk on
the truncated boolean hypercube, we consider arandom walk on the the full hypercube.
This can be viewed as the degenerate case of the Knapsack Markov chain which obtains
when ), & < b, i.e, the knapsack is large enough to contain all items simultaneously.

Let X = (X0, X1,...,%Xn—1) and Yy = (Yo, Y1, ..., Yn—1) be arbitrary states in 2 =
{0, 1}". The canonical path yy, from x to y is composed of n edges, 0 to n — 1, where
edgei issmply ((Yo, ..., Yi—1, X, Xi41, - - Xn—-1), (Yoo -+, ¥Yi—1, ¥i, Xit1, --- Xn-1)), i.€,
we flip the value of theith bit from x; to y;. Note that some of the edges may be loops
(if x; = v;). To compute p, fix attention on a particular (oriented) edge

e=(w,w) = ((wo,... , Wi, ... Wn1), (Wo, ... ,wi’,...wn_l)),
and consider the number of canonical paths yxy that include e. The number of possible

4This Proposition also has a suitably stated converse; see Theorem 8 of [Sin92].
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choices for x is 2', asthe final n—i positions are determined by x; = wj, for j >,
and by a similar argument the number of possible choicesfor y is 2", Thus, the to-
tal number of canonical paths using a particular edge e is 2"1; furthermore, Q(e) =
7(w)P(w, w’) > 27"(2n)~%, and the length of every canonical path is exactly n. Plug-
ging all these bounds into the definition of p yields p < n?. Thus, by Proposition 12.1,
the mixing time for the random walk on the boolean hypercubeis tx(¢) < nz((l n2)n+
Ins‘l). We call this Markov chain “rapidly mixing” because its mixing time grows
only polynomially with the input size n (even though the size of the state space is ex-
ponential in n). The above bound is some way off the exact answer [Dia88], which is
x(e) = O(n(Inn+Ing 1)), and the slackness we see here is typical of the method.

On reviewing the canonical path argument, we perceive what appearsto be amajor
weakness. In order to computethe key quantity o, we needed in turn to compute quanti-
tiessuch as Q(e) that depend crucially on the size of the state space 2. In the hypercube
example this does not present a problem, but in more interesting examples we do not
know the size of the state space: indeed, our ultimate goal will often beto estimate this
very quantity. Fortunately, it is possible to finesse this obstacle by implicit counting us-
ing a carefully constructed injective map. The idea will be illustrated by application to
the hypercube example.

Let edge e = (w, w’) be as before, and denote by cp(e) = {(X, y) : yxy €} the set
of al (endpoints of) canonical pathsthat use edge e. Define the map ne : cp(e) — 2 as
follows: if (x,y) = ((xo, ey Xn=1), (Yo, . .. ,yn_l)) € cp(e) then

Ue(xv y) = (UOs cee Un—l) = (XOs cee Xi—ls wi ’ yi-‘rlv sy yl"l—l)-
The crucial feature of the map ne isthat it isinjective. To see this, observethat x and y
may be unambiguously recovered from (Uo, ..., Un_1) = ne(X, Y) through the explicit
expressions
X = (Uo,...,Ui—1, Wi, Wi41,..., Wn_1)
and
y == (w07 vy Wi, wi’a ul+la ceey Un—l)-

Using the injective map 7, it is possible to evaluate p without recourse to explicit
counting. Noting® that 77 (X)7 (Y) = 7 (w)7 (ne(X, Y)), we have

1 1
o0 );ﬁ:en(X)JT(Y)Wxﬂ = @ P };en(w)n(ne(x, V) ¥yl
= Bluw) 2o T Y) = g < 2n

Yxy2>€

where the penultimateinequality followsfrom thefactsthat ne isinjective, andthat  is
a probability distribution. Since the above argument is valid uniformly over the choice
of e, we deduce p < 2n?. Thefactor of 2 as compared with the direct argument was lost
to dlight redundancy in the encoding: the map e was not quite a bijection.

5This is a trivial observation when the stationary distribution is uniform, as it is here, but it is
sometimes possible, by judicious choice of 7, to contrive such an identity even when the stationary
distribution is non-uniform. See Section 12.4 for an example.
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12.3.2 CONDUCTANCE

Asadvertised earlier, we now consider an alternative“ conductance” approach to bound-
ing tx (&), which has proved useful in situations where the Markov chain can be given a
geometric interpretation [DFK91]. The conductance [SJ89] of Markov chain 9t is de-
fined by

. Q(SS)
¢=00n= mp G
0<m(9=<1/2

: (12.3)

where Q(S, S) denotesthe sum of Q(x, y) over edges{x, y} € E withx € Sandy € S=
£2 — S. The conductance may be viewed as aweighted version of edge expansion of the
graph (£2, E) associated with 93t. Alternatively, the quotient appearing in (12.3) can be
interpreted as the conditional probability that the chain in equilibrium escapes from the
subset S of the state space in one step, given that it isinitially in S; thus, @ measures
the readiness of the chain to escape from any small enough region of the state space,
and hence to make rapid progress towards equilibrium. Thisintuitive connection can be
given aprecise quantitativeform asfollows. (See[Ald87, Alon86, AM 85, Che70, L S88]
for related results.)

PROPOSITION 12.2 Let 91 be afinite, reversible, ergodic Markov chain with loop
probabilities P(x, x) > % for all states x. Let @ be the conductance of 97t as defined
in (12.3). Then the mixing time of 91 satisfies t4(¢) < 2@~ 2(Inw(x)~* + Ing™1), for
any choice of initia state x.

Proof. Combine Proposition 1 of [Sin92] and Theorem 2 of [Sin92]. ]

From Proposition 12.2 it will be apparent that good lower bounds on conductance
trandlate to good upper bounds on the mixing time 4 (¢). Aswe shall see presently, itis
possible to bound the conductance of the random walk on the hypercube by considering
the geometry of the hypercube and applying an “isoperimetric inequality.”

Forx € 2 ={0,1}" and SC 2, define

Cx)={& = (b, ... .&n-1) 1 & —xi| < 3, foral i},

and C(S) = [J,.sC(x). Observethat the mapping C providesageometricinterpretation
of each set Sof statesasabody in n-dimensional space, and that within thisinterpretation
the entire state space 2 is a hypercube K = C(£2) of side 2. Each possible transition
from a state in Sto a state in S contributes one unit of area (i.e., (n — 1)-dimensional
volume) to d C(S) — aK, where d denotes boundary, and each transition occurs with
probability 2 ; thus,

— 1
S,S)=——vol,_1(3C(S — 9K 124
Q(S,S) 2n|Q|V0nl(a (S —9K), (12.4)
where voly denotes d-dimensional volume.
Intuitively, if vol, C(S) is large (but less than %voln K), then 9 C(S) — K must
also be large. It is this kind of intuition that is captured and formalized in an isoperi-
metric inequality. Rather than working with the Euclidean norm and using a classical
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isoperimetric inequality, it is advantageous in this instance to work with the | ,-norm
1§ lloc = Max{|&ol, ... , [§n—1]} anditsdual thel1-norm €[], = [I§ |1 = [€ol +- - -+ 1&n-1l,
andinvokeavery refined isoperimetricinequality dueto Dyer and Frieze [DF91], which
holdsfor arbitrary norms.

Observe that vol, C(S) = |9], vol, K = 2", and diamK = 2, where diam denotes
diameter in the | ..-norm. From Theorem 3 of [DF91], taking F to beidentically 1, we
have, for |S| < 3|£2],

vol, C(S) 1y
< zdiamK;
voln_1(3C(S) —aK) ~ 2 ame:

it followsimmediately that vol,_1(0 C(S) — dK) > |S|. Combining thisinequality with
equation (12.4) yields

S| (S
2n|2| 2n

Q(SS) >

From the definition of conductance, @ > 2—1n and hence, by Proposition 12.2, 74 (¢) <
8n?((In2)n+Ine~1). It will be seen that for this examplethe two bounds obtained using
the conductance and canonical paths arguments differ by just a small constant factor.

—
A MORE COMPLEX EXAMPLE: MONOMER-DIMER
SYSTEMS

24

In this section we describe a significant computational problem to which the Markov
chain Monte Carlo method has been successfully applied to yield an efficient approx-
imation algorithm, or FPRAS. (Thisisin contrast to the Knapsack problem discussed
in Section 12.2, which is still open.) Moreover, the Markov chain Monte Carlo method
isto date the only approach that yields a provably efficient algorithm for this problem.
Thisapplication will illustrate the full power of the analysis techniques described in the
previous section. Our presentation is an improved version of one we originaly gave
in [JS89, Sin93].

The problem in question is a classical one from statistical physics, known as the
monomer-dimer problem. In amonomer-dimer system, the vertices of afinite undirected
graph G = (V, E) are covered by a non-overlapping arrangement, or configuration of
monomers (molecules occupying one site, or vertex of G) and dimers (molecules oc-
cupying two vertices that are neighborsin G). Typically, G isaregular lattice in some
fixed number of dimensions. Three-dimensional systems occur classically in the theory
of mixtures of moleculesof different sizes[Gugg52] and in the cell-cluster theory of the
liquid state [CdBS55]; in two dimensions, the system is used to model the adsorption
of diatomic molecules on acrystal surface [Rob35]. For a more detailed account of the
history and significance of monomer-dimer systems, the reader isreferred to the seminal
paper of Heilmann and Lieb [HL72] and the references given there.
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It is convenient to identify monomer-dimer configurations with matchings in the
graph G; amatching in G isasubset M C E such that no two edges in M share an
endpoint. Thus, amatching of cardinality k, or ak-matching, corresponds precisely to a
monomer-dimer configuration with k dimersand 2(n — k) monomers, where2n = |V | is
the number of verticesin G.6 To each matching M, aweight w(M) = A'M! is assigned,
where A isapositivereal parameter that reflectsthe contribution of adimer to the energy
of the system. The partition function of the system is defined as

ZO) = Zg(\) = Zw(M) = ka,\", (12.5)
M k=0

where my = my(G) is the number of k-matchingsin G (or equivalently, the number of
monomer-dimer configurations with k dimers). For a physical interpretation of (12.5),
see[HL72].7

Thepartition function isacentral quantity in statistical physics, and captures essen-
tially everything one needs to know about the thermodynamicsof the system, including
guantities such as the free energy and the specific heat, and the location of phase transi-
tions. With thisin mind, in the remainder of this section we will develop an algorithm
for computing Zg at an arbitrary point » > 0. We should a so point out that Z¢ (1) is of
independent combinatorial interest, being nothing other than the generating function for
matchings, or matching polynomial of G [LP86]. Thus, for example, Zs (1) enumerates
all matchingsin G, and the coefficient my enumerates matchings of cardinality k. We
shall have more to say about these connectionsin Section 12.5.1.

Our starting point is the observation that no feasible method is known for comput-
ing Z exactly for general monomer-dimer systems; indeed, for any fixed value of A > 0,
the problem of computing Z (1) exactly for agiven graph G iscompletefor the class#P
of enumeration problems, which, as we explained in Section 12.2, may be regarded as
convincing evidence that no polynomial time exact algorithm can exist for this prob-
lem [Val79b].8 It is therefore pertinent to ask whether there exists an FPRAS for this
problem. In this context, by an FPRASwe mean an algorithmwhich, givenapair (G, 1),
and a parameter ¢ > 0, outputsa number Y such that

Pr(l-—e)Ze) <Y <(1+&)Zc() = 3,

and runsin time polynomial in n and A’ = max{1, 1}.9

6The assumption that the number of verticesin G iseven isinessential and is made for notational
convenience.

7More generally, there may be aweight A, associated with each edge e € E, and theweight of M is
then w(M) = []ecm Ae- The agorithm we present here extendsin astraightforward fashion to thismore
general setting.

8An efficient algorithm does exist for computing the leading coefficient m,, exactly, provided the
graph G isplanar. Thisquantity hasan interpretation asthe partition function of asystem of hard dimers,
in which no monomers are permitted. This agorithm, due independently to Fisher, Kasteleyn, and
Temperley [Fish6l, Kast61, TF61] in 1961, is alandmark achievement in the design of combinatorial
agorithms. Unfortunately, it does not seem to extend either to non-planar graphs or to other coefficients.

9By analogy with the definition given in Section 12.2, this assumes that the edge weight A is pre-
sented inunary. Thus, if therunning time of theal gorithmisto be polynomial inthesize of the system, n,
then the edge weight 2 must be polynomially bounded in n. Thisis not a severe restriction in practice
when computing the partition function.
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For agivengraph G, wewill construct an FPRASfor Zg by Monte Carlo simulation
of a suitable Markov chain 9mach(A), parameterized on the edge weight . The state
space, £2, isthe set of all matchingsin G, and the transitions are constructed so that the
chain is ergodic with stationary distribution rr; given by
AIMI
Z()
(Since G isfixed fromnow on, we drop the subscript from Z.) In other words, the station-
ary probability of each matching (monomer-dimer configuration) is proportional to its
weightinthepartitionfunction (12.5). TheMarkov chain 91 maen (1), if Smulated for suf-
ficiently many steps, providesamethod of sampling matchingsfromthedistribution ;.

Distributionsof thisform are natural in statistical physicsand areusually referredto
ascanonical or Gibbsdistributions. Notethat an alternativeinterpretation of the partition
functionisasthe normalizing factor in this distribution. Sampling from this distribution
at variousvaluesof A hasmany applications, such asestimating the expectation of certain
natural quantities associated with a configuration (e.g., the mean number of monomers,
or the mean distance between a pair of monomersin a dense configuration of dimers).
Aswe shall see shortly, it also allows one to approximate the partition function itself.

It is not hard to construct a Markov chain 9tmach(2) with the right asymptotic
properties. Consider the chain in which transitions from any matching M are made
according to the following rule;

(M) = (12.6)

| with probability 1 let M’ = M; otherwise,
I1. select an edge e = {u, v} € E u.ar. and set
M—e ifee M;
M+e if both u and v are unmatched in M;
M ={M+e—¢€ if exactly oneof u and v ismatchedin M
and € isthe matching edge;
M otherwise;

I11. goto M’ with probability min{1, =; (M") /7, (M)}.

It is helpful to view this chain as follows. There is an underlying graph defined on the
set of matchings £2 in which the neighbors of matching M are all matchings M’ that
differ from M viaone of the following local perturbations: an edge is removed from M
(atype 1 transition); an edge is added to M (a type 2 transition); or a new edge is
exchanged with anedgein M (atype O transition). Transitionsfrom M are made by first
selecting aneighbor M’ u.a.r., and then actually making, or accepting the transition with
probability min{1, 7, (M’)/m, (M)}. Note that the ratio appearing in this expression is
easy to compute: it isjust A7, A or 1 respectively, according to the type of thetransition.

As the reader may easily verify, this acceptance probability is constructed so that
the transition probabilities P(M, M’) satisfy the detailed balance condition

QM, M) =m (M)P(M, M) =m, (M)P(M',M), foral M,M’ € £,

i.e, Mmacn(A) isreversible with respect to the distribution 7, . This fact, together with
the observation that 9tmacn(A) isirreducible (i.e., all states communicate, for example
viathe empty matching) and aperiodic (by step 1, the self-loop probabilities P(M, M)
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are al non-zero), ensures that Mmacn(A) is ergodic with stationary distribution i, as
required.10
Having constructed a family of Markov chains with stationary distribution 5, our
next task isto explain how samplesfrom this distribution can be used to obtain areliable
statistical estimate of Z (1) at aspecified point A = A > 0. Our strategy isto express Z (1)
as the product
70 — Z()  Z(A-1) Z(hp)  Z()1)
) = X X e X
Z(Ar-1)  Z(Ar-2) Z(r1)  Z(2o)
where0 =g < A1 < Ao < -+ < A1 < Ar = 2 is a suitably chosen sequence of
values. Note that Z(Ao) = Z(0) = 1. We will then estimate each factor Z(1i)/Z(%i_1)
in this product by sampling from the distribution r;, . Thisapproach is analogousto that
described in Section 12.2 for the Knapsack problem (see Equation (12.2)). For reasons
that will become clear shortly, we will use the sequence of values A, = |E|~* and A =
A+ 31 forl<i <r. Thelengthr of the sequenceistaken to be minimal such that
1+ > ., s0 we have the bound

r < [2n(Inkx+In|E[)]+1. (12.8)

x Z (%), (12.7)

To estimate the ratio Z(A;)/Z(Ai_1), we will expressit, or rather its reciprocal, as
the expectation of a suitable random variable. Specifically, define the random variable
fi(M) = (*;_fil)'M', where M is a matching chosen from the distribution 7;,. Then we

have
A )™M M 1 Z(hi_
Ef=Y (M) Ao Loy 20w

- \ A Z(hi) L) G Z(Xi)
Thus, theratio pj = Z(Ai_1)/Z();) can be estimated by sampling matchings from the
distribution rr;, and computing the sample mean of f;. Following (12.7), our estimator
of Z (%) will bethe product of the reciprocalsof these estimated ratios. Summarizing this
discussion, our algorithm can be written down as follows:

ALGORITHM A

Step 1: Compute the sequence A1 = |[E|~t and A; = (1+%)'_1A1 forl<i<r,
where r is the least integer such that (1+%)r_1kl > Set Ao = 0 and
Ar = AL
Sep 2: For each value A = A1, A2, ..., Ar inturn, compute an estimate X; of the
ratio p; asfollows:
(a) by performing S independent simulations of the Markov chain
Mmach(Xi), €ach of length T;, obtain an independent sample of size S
from (close to) the distribution r;, ;

10The device of performing random walk on a connected graph with acceptance probabilities of
this form is well known in Monte Carlo physics under the name of the “Metropolis process’ [Met53].
Clearly, it can be used to achieve any desired stationary distribution = for which the ratio 7 (u) /7 (v)
for neighbors u, v can be computed easily. It is aso the standard mechanism used in combinatorial
optimization by simulated annealing: see Section 12.6.
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(b) let X; be the sample mean of the quantity (k/‘\—:l)'M'.
Sep 3: Output the product Y = [Ti_; X ™.

To complete the description of the algorithm, we need to specify the sample size Sin
Step 2, and the number of simulation steps T; required for each sample. Our goal is to
show that, with suitable valuesfor these quantities, Algorithm A isan FPRASfor Z(A).

Theissue of the sample size Sis straightforward. Using elementary statistical cal-
culations, we can show the following:

PROPOSITION 12.3 In Algorithm A, suppose the sample size Sin Step 2is S=
[130es—2r ], and that the simulation length T; islarge enough that the variation distance
of Mmacn(2i) from its stationary distribution 7;, is at most ¢/5er. Then the output
random variable Y satisfies

Pr(1-e)ZG) <Y <(1+8)Z() = 2.

Since r is a relatively small quantity (essentially linear in n: see (12.8)), this result
means that amodest sample size at each stage sufficesto ensureagood final estimate Y,
provided of coursethat the samples come from a distribution that is close enoughto rr;, .
It isin determining the number of simulation steps, T;, required to achieve this that
the meat of the analysis lies: of course, this is tantamount to investigating the mixing
time of the Markov chain M maich(Ai). Our main task in this section will be to show:

PROPOSITION 12.4 The mixing time of the Markov chain 9 macn(A) satisfies
x(e) <4 EIn}(n(Inn+1In1") +Ine™?).

The proof of this result will make use of the full power of the machinery introduced in
Section 12.3. Note that Proposition 12.4 is a very strong statement: it says that we can
samplefrom (close to) the complex distribution rr; over the exponentially large space of
matchingsin G, by performing a Markov chain simulation of length only alow-degree
polynomial in the size of G.11

According to Proposition 12.3, we require a variation distance of ¢/5er, so Propo-
sition 12.4 tells us that it sufficesto take

Ti = [4/EInA{ (ndnn—+1nA) +In(Ser /e))]. (12.9)

This concludes our specification of the Algorithm A.

Before proceeding to prove the above statements, let us convince ourselves that
together they imply that Algorithm A isan FPRASfor Z()). First of all, Proposition 12.3
ensuresthat the output of Algorithm 4 satisfies the requirements of an FPRASfor Z. It
remainsonly to verify that the running timeis bounded by apolynomial inn, N, andeL,
Evidently, the running time is dominated by the number of Markov chain simulations

Mincidentally, we should point out that Proposition 12.4 immediately tells us that we can sample
monomer-dimer configurations from the canonical distribution 7, intime polynomia innand A’. This
isinitself an interesting result, and allows estimation of the expectation of many quantities associated
with monomer-dimer configurations.
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steps, whichis Zir=1 ST;; sinceT; increaseswithi, thisisat most r ST, . Substituting the
upper boundforr from(12.8), and valuesfor Sfrom Proposition 12.3and T, from(12.9),
we see that the overall running time of Algorithm A is bounded by 12

O(n*|E[X (Innx)3%e72),

which grows only polynomially with n, » and e 1. We have therefore proved

THEOREM 12.1 Algorithm A isan FPRAS for the partition function of an arbitrary
monomer-dimer system.

We return now to prove Proposition 12.3 and Proposition 12.4. Thefirst of thesecan
be dispensed with quickly. It rests on the standard observation that the sample size Sre-
quired at each value . = 1; to ensurethat our final estimate isgood with high probability
depends on the variances of the random variables f;, or more precisely on the quanti-
ties (Var f;)/(E ). Intuitively, if these quantities are not too large, asmall samplewill
suffice. Since f; takesvaluesintherange[0, 1], itisclear that Var f; < E fj = p;, so that
(Var f;)/(E f)? < ,oi‘l. Now, from the definition of Z and A; wehavefor1 <i <r,

1 ZOW) D mif ( A ) < 1)“
A = = e— 1+— .
T Z0in T nemal, i) S n) =° (12.10)

Also, it is easy to see (using the fact that matchingsare subsetsof E) that Z (|E| ™) <e,
50(12.10) holdsfori = 0 aso. Thus, wehave (Var f;)/(E f;)? < eforalli. Thisexplains
our choice of valuesfor the A;.

Armed with this bound on the variances of the f;, one can prove Proposition 12.3
by a routine statistical calculation. The details are unedifying and are deferred to the
Appendix.

We turn now to the more challenging question of proving Proposition 12.4. Our
strategy will beto carefully chooseacollection of canonical pathsT” = {yxy : X, Y € 2}
inthe Markov chain 9t macn (1) for which the“ bottleneck” measure p(I™) of Section 12.3
issmall. We can then appeal to Proposition 12.1 to bound the mixing time. Specifically,
we shall show that our paths satisfy

p(T) < 4| E|ni. (12.11)

Since the number of matchingsin G is certainly bounded above by (2n)!, the station-
ary probability , (X) of any matching X is bounded below by 7, (X) > 1/2n)!A"".
Using (12.11) and the fact that Inn! < nInn, the bound on the mixing time in Propo-
sition 12.4 can now be read off Proposition 12.1.

It remains for us to find a set of canonical paths I' satisfying (12.11). For a pair
of matchings X,Y in G, we define the canonical path yxy as follows. Consider the
symmetric difference X @ Y. A moment’sreflection should convince the reader that this
consists of a digoint collection of paths in G (some of which may be closed cycles),

12|n deriving the O-expression, we have assumed w.l.o.g. that T, = O(\ E|nZv InnX’). Thisfollows
from (12.9) with the additional assumption that Ins~1 = O(nlnn). This latter assumption is justified
since the problem can aways be solved exactly by exhaustive enumeration intime O(n(2n)!), whichis
O(e7?) if Ine~1 exceeds the above bound.
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each of which has edges that belong alternately to X and to Y. Now suppose that we
have fixed some arbitrary ordering on all simple pathsin G, and designated in each of
them a so-called “start vertex,” which is arbitrary if the path is a closed cycle but must
be an endpoint otherwise. Thisordering inducesauniqueordering Py, P, ... , Py onthe
paths appearing in X @ Y. The canonical path from X to Y involves“unwinding” each
of the P, in turn as follows. There are two cases to consider:

(i) P isnotacycle. Let P consist of the sequence (vg, vs, ... , v)) of vertices, with vg
the start vertex. If (vg, v1) € Y, perform a sequence of type O transitions replacing
(v2j+1, V2j42) by (v2j,v2j41) for j = 0,1,..., and finish with a single type 2
transitionif | isodd. If onthe other hand (vo, v1) € X, beginwithatype1 transition
removing (vo, v1) and proceed as before for the reduced path (vy, ..., v).

(i) P isacycle. Let P consist of the sequence (vo, vy, ..., va41) Of vertices, where
| > 1, vo isthestart vertex, and (vzj, v2j41) € X for 0 < j <I, theremaining edges
belonging to Y. Then the unwinding begins with a type 1 transition to remove
(vo, v1). We areleft with an open path O with endpointsvg, v1, one of which must
be the start vertex of O. Suppose vk, k € {0, 1}, is not the start vertex. Then we
unwind O asin (i) above but treating vk as the start vertex. This trick serves to
distinguish paths from cycles, aswill prove convenient shortly.

Thisconcludesour definition of thefamily of canonical pathsT". Figure12.1will helpthe
reader pictureatypical transitiont on acanonical path from X to Y. The path P; (which
happensto be a cycle) isthe one currently being unwound; the paths Py, ... , P_; tothe
left have already been processed, whiletheones P, .4, ... , Py are yet to be dealt with.

We now proceed to bound the “ bottleneck” measure p(T") for these paths, using the
injective mapping technology introduced in Section 12.3. Let t be an arbitrary edge in
theMarkov chain, i.e., atransitionfrom M to M’ =£ M, andlet cp(t) = {(X,Y) : yxy >t}
denotethe set of all canonical pathsthat uset. (We usethenotationt in place of e hereto
avoid confusionwith edgesof G.) Just asin Section 12.3, we shall obtain abound onthe
total weight of all pathsthat passthrought by defining an injective mapping n; : cp(t) —
£2. By analogy with the hypercube examplein Section 12.3, what we would liketo dois
toset (X, Y)=XdY @ (MUM’); theintuition for thisisthat (X, Y) should agree
with X on pathsthat have already been unwound, and with Y on paths that have not yet
been unwound (just as ne(X, y) agreed with x on positions 1, ... ,i — 1 and with y on
positionsi + 1, ... ,n—1). However, thereis aminor complication concerning the path
that we are currently processing: in order to ensure that n; (X, Y) isindeed a matching,
we may — aswe shall see— haveto remove from it the edge of X adjacent to the start
vertex of the path currently being unwound: we shall call this edge exyt. Thisleads us
to the following definition of the mapping ;:

X®YD(MUM) —exyt, iftistype0andthe
n(X,Y) = current path isacycle;
XY (MUM), otherwise.
Figure 12.2 illustrates the encoding n; (X, Y) that would result from the transition t on
the canonical path sketched in Figure 12.1.
Let uscheck that n; (X, Y) isalwaysamatching. To seethis, consider the set of edges
A=X®Y & (MUM’), and supposethat somevertex, u say, hasdegreetwoin A. (Since
A C XUY, no vertex degree can exceed two.) Then A containsedges {u, v1}, {u, vy} for
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FIGURE 12.1
Atransitiont in the canonical path from X toY.
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FIGURE 12.2
The corresponding encoding 7 (X, Y).

distinct vertices vy, vp, and since A € X U'Y, one of these edges must belong to X and
the other to Y. Hence, both edgesbelongto X &Y, which meansthat neither can belong
to M U M’. Following the form of M UM’ along the canonical path, however, it is clear
that there can be at most one such vertex u; moreover, this happens precisely when the
current path isacycle, u isits start vertex, and t istype 0. Our definition of n; removes
one of theedgesadjacent tou inthiscase, so all verticesin n; (X, Y) have degree at most
one, i.e, (X, Y) isindeed a matching.

We now haveto check that »; isinjective. It isimmediate from the definition of n,
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that the symmetric difference X @Y can be recovered from 5 (X, Y) using the relation

n(X,Y)d(MUM’) +exyt, iftistype0andthe
X@Y = current path isacycle;
n(X,Y)Yd(MUM’), otherwise.

Notethat, oncewe haveformed the set i (X, Y) & (M UM’), it will be apparent whether
the current path is a cycle from the sense of unwinding. (Note that exy: is the unique
edge that forms a cycle when added to the path.) Given X @ Y, we can at once infer
the sequence of paths Py, P», ... , Py that have to be unwound along the canonical path
from X to Y, and the transition t tells us which of these, P, say, is the path currently
being unwound. The partition of X @Y into X and Y is now straightforward: X has
the same parity as n:(X,Y) on paths Py, ..., P_1, and the same parity as M on paths
Pi.1,..., Py Finally, thereconstructionof X andY iscompleted by notingthat XNY =
M — (X @ Y), which isimmediate from the definition of the paths. Hence, X and Y can
be uniquely recovered from n (X, Y), so n; isinjective.

We are almost done. However, thefact that n; isinjectiveisnot sufficient in thiscase
because, in contrast to the hypercube example, the stationary distribution =, is highly
non-uniform. What wereguirein additionisthat »; be“weight-preserving,” in the sense
that Q(t)m;. (nt (X, Y)) ~ m, (X)7; (Y). More precisely, we will show in amoment that

.00 (Y) < 2|E[X2 Q) (e (X, Y)). (12.12)

First, let us see why we need a bound of this form in order to estimate p. We have

1
B0 2 O0mMlyxel < 2AER 3 m om0V Iy
yxy>t yxy 3t

<HEM2 Y m (X, Y))

yxy >t

< 4/Ejm?, (12.13)

where the second inequality follows from the fact that the length of any canonical path
is bounded by 2n, and the last inequality from the facts that »; isinjective and rr; isa
probability distribution.

It remainsfor usto proveinequality (12.12). Before we do so, it is helpful to notice
that Q(t) = (2| E|)~tmin{m, (M), ;(M’)}, asmay easily be verified from the definition
of Mmatch(A). We now distinguish four cases:

(i) tisatypeltransition. Suppose M'=M —e. Then i (X,Y) = XDY DM, 50,
viewed as multisets, M Un; (X, Y) and X UY areidentical. Hence, we have

(X)) (Y) = m (M), (ne (X, )

_ 2IE|Q(t)
min{r;, (M), 7, (M")}

X 70 (M), (7 (X, Y))

= 2|E|Q(t) max{1, (M) /7, (M)}, (M) 7. (e (X, Y))

< 2[E[A' QM) (0 (X, Y)),
from which (12.12) follows.
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(ii) tisatype?2transition. Thisishandled by asymmetrical argument to (i) above,
with theroles of M and M’ interchanged.

(iii) tisatypeOtransition and the current pathisacycle. Suppose M’ =M +e—¢,
and consider themultisst MUn (X, Y). Thenn (X, Y) = X®Y & (M +€) —exvt,
sothemultiset M Un; (X, Y) differsfrom X UY only inthat e and exy; aremissing
fromit. Thus, we have

1 (X)7,.(Y) < 227, (M)7,, (e (X, Y))

= 2|EIN? Q) (n (X, Y)),

since in this case 7, (M) = 7;(M"), and so Q(t) = (2|E|)~1m, (M). Therefore,
(12.12) is again satisfied.

(iv) tisatypeOtransitionandthecurrent pathisnotacycle. Thisisidentical with (iii)
above, except that the edge exy: doesnot appear in the analysis. Accordingly, the
boundis

. (X)m.(Y) < 2[EIV QM) (e (X, Y)).

This concludesour proof of (12.12). We may now deducefrom (12.13), that p(I") <
4] E|n)J2. However, one additional observation will allow us to improve the bound to
(') < 4|E|n)/, whichiswhat weclaimedin (12.11). Looking at the above caseanalysis
we seethat, in all cases except case (iii), (12.12), and hence (12.13), actually hold with
1’2 replaced by . But in case (iii) we can arguethat n; (X, Y) must have such arestricted
form that stt T, (ne (X, Y)) is bounded above by AL Us ng this fact in the fina
inequality in (12.13), we get theimproved upper bound of 4| E|nA’ inthiscase, and hence
in all cases. Thiswill complete our verification of the bound (12.11) on p(I").

To justify the above claim, note that 7 (X, Y) has at least two unmatched vertices,
namely the start vertex of the current cycle and the vertex that is common to both e
and €. Moreover, in (X, Y) @ M these vertices are linked by an aternating path that
starts and ends with an edge of M. So we may associate with each matching n; (X, Y)
another matching, say n; (X, Y), obtained by augmenting »: (X, Y) along this path. But
this operation is uniquely reversible, so al matchings n; (X, Y) created in this way are
distinct. Moreover, ; (7. (X, Y)) = Am, (71 (X, Y)). Hence we have Y, (n: (X, Y)) =
AE (X, Y) < AL 80 Y (e (X, Y)) < A/t asclaimed.

e
MORE APPLICATIONS

s

In this section we review some further applications of the techniques described in Sec-
tion 12.3to problemsin combinatorial enumeration and integration. In each case, aswith
the monomer-dimer problem of Section 12.4, the Markov chain Monte Carlo method
provides the only known basis for an efficient algorithm in the FPRAS sense.
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12.5.1 THE PERMANENT

Historically, thefirst major application of themethodsof Section 12.3wasto the approxi-
mation of the permanent function. The permanent of an n x n integer matrix
A= (gj:0<i,j <n-1)isdefined by

n-1
perA= Z l_[a-i,rr(i)s
T i=0

where the sum is over all permutations w of [n] = {0, ... ,n — 1}. For convenience, we
take A to be a0,1-matrix, in which case the permanent of A hasa simple combinatorial
interpretation: namely, per A is equal to the number of perfect matchings (1-factors) in
the bipartite graph G = (Vy, Vo, E), where Vi = Vo =[n], and (i, j) € E iff g = 1.
Valiant [Val 793 demonstrated that evaluating the permanent of a 0,1-matrix is com-
plete for the class #P; thus, just asin the case of the monomer-dimer partition function,
we cannot expect to find an algorithm that solves the problem exactly in polynomial
time.!3 Interest has therefore centered on finding computationally feasible approxima-
tion algorithms.

It turns out that the Markov chain Monte Carlo method can be used to construct
such an algorithm (in the FPRA S sense) for almost all instances of this problem. To state
the result precisely, we will use the perfect matching formulation. Let G = (V4, V2, E)
be a bipartite graph with |V1| = |V2| = n. A special role will be played in the result by
the number of near-perfect matchingsin G, i.e., matchingswith exactly two unmatched
vertices. Following the notation of the previous section, let us write my = mg(G) for
the number of k-matchings in G. Then the number of perfect matchings is my, and
the number of near-perfect matchingsis m,_;. Jerrum and Sinclair [JS89] showed that
there existsarandomized approximation schemefor the number of perfect matchingsmy,
whose running time is polynomial in n, e =1 and the ratio mp_1/my.

Note that thisalgorithmisnot in general an FPRAS, sincethereexist (n-+ n)-vertex
graphs G for which the ratio m,_1/mjy is exponential in n. However, it turns out that
these examples are wildly atypical in the sense that the probability that a randomly
selected G on n + n vertices violates the inequality m,_;/m, < 4ntendsto O asn —
00.14 Thus, the above algorithm constitutes an FPRAS for almost all graphs; moreover,
the condition that the ratio m,,_;/m, be bounded by a specified polynomial in n can be
tested for an arbitrary graph in polynomial time [JS89]. It is also known [Bro86] that
every sufficiently dense graph (specifically, those in which every vertex has degree at
least %n) satisfiesmy_1/m, = O(n?). Moreover, it has recently been shown by Kenyon,
Randall, and Sinclair [KRS96] that the ratio m,_;/m, is guaranteed to be small for a
wide class of homogeneous graphs G, including the important case of geometric lattice
graphsin any number of dimensions. We should also point out that, although the above
description has been couched in terms of matchings in bipartite graphs because of the
connection with the permanent, everything extends to general 2n-vertex graphs.

131n contrast, as is well known, the determinant of an n x n matrix can be evaluated in O(n3)
arithmetic operations using Gaussian elimination.
14For more refined results along these lines, see Frieze [Friez89] or Motwani [Mot89].
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It was Broder [Bro86, Mih89a] who first proposed a Markov chain Monte Carlo
approach to approximating the permanent viaMarkov chain simulation. Hisideawasto
sample perfect matchings in a bipartite graph G almost u.a.r. by simulating a Markov
chain whose states are perfect and near-perfect matchingsin G; then, using a reduction
similar in spirit to the one described in Section 12.2 for the Knapsack problem, the
number of perfect matchings could be counted. Broder’s Markov chain wasfirst proved
to be rapidly mixing (under the above condition on G) by Jerrum and Sinclair [JS89],
using a canonical paths argument as in Section 12.3.

An alternative, more natural approximation algorithm for the permanent follows
quite painlessly from our results about the monomer-dimer problem derived in the pre-
vious section. Note that m, is precisely the leading coefficient of the partition func-
tion Zg (1) of the monomer-dimer system associated with G (see (12.5)). Inthe previous
section, we saw how to sample matchingsin G from the distribution

AIMI AIMI
Zo(h) Y pomiAk

for any desired A > 0, in time polynomial in n and ' = max{x, 1}, by Monte Carlo
simulation of the Markov chain Mtmach(2). We also saw how this fact can be used to
compute Zg (1) to good accuracy in time polynomial in n and A". Suppose then that
we have computed a good estimate Zs() of Zg(X). Then we can get agood estimator
for m, by sampling matchings from the distribution r; and computing the proportion,
X, of the sample that are perfect matchings; since EX = myA"/Zg (1), our estimator is
Y = XA "Zg(A).

The sample size required to ensure a good estimate depends on the variance of a
single sample, or more precisely on the quantity (E X)~1. Clearly, by making A large
enough, we can make this quantity, and hence the sample size, small: this corresponds
to placing very large weight on the perfect matchings, so that their proportion can be
estimated well by random sampling. How large does A haveto be? Thisanalysisiseased
by the beautiful fact that the sequence mg, my, ... , my islog-concave, i.e., my_1my, 1 <
m2fork=1,2,...,n— 1. (Thisiswell known[HL72]; adirect combinatorial proof may
befoundin[JS89].) Asaconsequence, it followsthat my_1/my < my_1/m, foral k, and
hence that my/my < (Mp_1/my)" K. This meansthat, if wetake » > mp_1/m;, we get

mpA" mpA" 1
EX= Zo0) — STomak > —k (12.15)
whichimpliesthat the samplesizerequired growsonly linearly with n. Thus, itisenough
to take A about as large asthe ratio m,_;/m,. Since the time required to generate asin-
gle sample grows linearly with A (see Proposition 12.4), the running time of the overall
algorithmis polynomial in n, ¢ =1 and the ratio m,_;/m,, as claimed.

(M) = (12.14)

OPEN PROBLEM 12.2 |s there an FPRAS for the permanent of a general 0,1 ma-
trix? Note that this problem is not phrased as a question about the mixing time of a
specific Markov chain, and certainly the chain 9t macn(A) described hereis not directly
applicable: aswe have seen, it seems to be useful only when the ratio my_1/m; for the
associated bipartite graph is polynomially bounded. However, the Markov chain Monte
Carlo method seems to offer the best hope for a positive resolution of this question. Es-
sentialy, the issue is whether the Markov chain Dtmacn(A) can be suitably adapted to
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provide a general solution, or perhaps used as a*“black box” following some ingenious
preprocessing of theinput matrix. (Thislatter idea hasbeen usedin aweaker way by Jer-
rum and Vazirani [JV92] to obtain a randomized approximation scheme for the general
0,1 permanent whose running time, while still not polynomial, is asymptotically signif-
icantly faster than that of more naive methods.)

We conclude our discussion of the permanent by mentioning some extensions. First
of al, it isnot hard to see, again using the log-concavity property, that the above tech-
nigue can be extended to approximate the entire sequence (my), or equivaently all the
coefficients of the monomer-dimer partition function [JS89]. The running time per co-
efficient is no worse than for m,,. Secondly, many other approximate enumeration (and
sampling) problems can be reduced to enumeration of perfect matchings; examplesin-
clude counting Hamiltonian cycles in dense or random graphs (Dyer, Frieze, and Jer-
rum [DFJ94], Frieze and Suen [FS92]), counting graphs with given degree sequence
(Jerrum and Sinclair [JS904], Jerrum, McKay, and Sinclair [IM S92]), and counting Eu-
lerian orientations of an undirected graph (Mihail and Winkler [MW91]).

12.5.2 VOLUME OF CONVEX BODIES

A praoblem that has attracted much attention in the context of the Markov chain Monte
Carlo method is that of estimating the volume of a convex body in high-dimensional
space. Computing the volume of apolytopein n = 3 dimensionsisnot acomputationally
demandingtask, but the effort required rises dramatically asthe number n of dimensions
increases. Thisempirical observationis supported by aresult of Dyer and Frieze [DF88]
to the effect that evaluating the volume of a polytope exactly is #P-hard.

In contrast, by applying the Markov chain Monte Carlo method, Dyer, Frieze, and
Kannan [DFK91] were able to construct an FPRAS for the volume of a convex body in
Euclidean space of arbitrary dimension. The convex body K in question is presented
to the algorithm using a very general mechanism called a membership oracle: given
a point X, the membership oracle simply reveals whether or not x € K. Other ways
of specifying the body K — for example as a list of vertices or (n — 1)-dimensional
facets — can be recast in the oracle formulation. The algorithm must also be provided
with a guarantee in the form of two balls, one contained in K and of non-zero radius,
and the other containing K. This seemingly technical condition is essential, for without
such a guarantee the task is hopeless.

There are several difficult technical points in the construction and analysis of the
volumeapproximationalgorithmof Dyer et a., but, at ahigh enoughlevel of abstraction,
the method is quite smple to describe. The idea is to divide space into n-dimensional
(hyper)cubes of side 8, and to perform a random walk on the cubes that lie within the
body K. Supposethe randomwalk isat cube C at timet. A cube C’ that is orthogonally
adjacent to C is selected uniformly at random; if C’ € K then the walk movesto C’,
otherwise it stays at C. It is easy to check that the walk (or something close to it) is
ergodic, and that the stationary distributionis uniform on cubesin K. Thecubesize§ is
selected so as to provide an adequate approximationto K, while permitting the random
walk to “explore” the state space within a reasonable time. Rapid mixing (i.e., in time
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polynomial in n) isproved viathe conductanceargument of Section 12.3, by considering
the geometry of the state space of the random walk and applying classical isoperimetric
inequalities.

Once the sampling problem has been solved, the volume of K can be computed by
the techniqueof Section 12.2. Let Bo C B; C --- C By, beasequence of concentric balls
chosen sothat By € K C By, and the volumeof B; exceedsthat of B;_1 by (say) afactor
of 2. Consider the sequence of convex bodies

Bo=KNByCKNByC-- CKNBp=K. (12.16)

The volume of the first is known, while the ratios of volumes of successive bodies can
be estimated by Monte Carlo sampling using ssimulation of the random walk described
earlier. Random sampling is effective in this context because the volumes of adjacent
bodiesin sequence (12.16) differ by afactor of at most 2. By multiplying the estimates
for the variousratios, the volume of thefinal body K N B, = K may be computed to any
desired degree of approximation.

Although there are many situations in which a source of random bits seemsto aid
computation, the current example is particularly interesting in that randomness is of
provablevalue. It hasbeen shown by Elekes[Elek86] that a deterministic algorithm that
is restricted to a subexponential number of oracle calls is unable to obtain a good (say,
to within aratio of 2) approximation to the volume of a convex body.

The close relationship of volume estimation to (approximate) multi-dimensional
integration has provided strong practical impetus to research in this area. Since the ap-
pearance of the original paper of Dyer et al., much effort has gone into extending the
algorithmto awider class of problems, and into reducing its running time, which, though
polynomial in n, is till rather high in practical terms. Applegate and Kannan [AK91]
have generalized the algorithm to the integration of log-concave functions over convex
regionsin arbitrary dimensional space, while Dyer and Frieze [DF91], and Lovéasz and
Simonovits[L S93] havedevised many improvementsthat have successively reduced the
time complexity of the algorithm. The success of the latter pursuit may be judged from
the dramaticimprovement in the dependence of thetime-complexity onthedimensionn:
from O(n?") for the original algorithm of Dyer et a., to O(n’) as claimed recently by
Kannan, Lovéasz, and Simonovits [KL S944].15 Some of the ideas that have led to these
improvementsare sketched below; for moredetail the reader isreferred to Kannan'ssur-
vey article [Kan94], and the references therein.

One source of inefficiency in the early approach was that the random walk in K
could, in principle, get stuck for long periods near “sharp corners’ of K. Indeed, in the
first algorithm, Dyer et al. found it necessary to “round off” the cornersof K beforesim-
ulating the random walk. Applegate and Kannan obtained a substantial improvement in
efficiency by providing the random walk with afuzzy boundary. Rather than estimating
the volume of K directly, their version of the algorithm estimates the integral of afunc-
tion F that takes the value 1 on K, and decays to 0 gracefully outside K. The random
walk on cubesis modified so that its stationary distributionis approximately proportional

15The O( ) notation hides not merely constants, but also arbitrary powers of logn. Kannan et a.’s
agorithm requires just O(n®) oracle calls, but the cost of effecting a single step of their random walk
may be as high as O(n?).
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to the function F. As we saw in Section 12.4, in the context of the matching Markov
chain Mmacn(A), thisendiseasily achieved by using aMetropolis-styleruleto determine
transition probabilities. Provided F decays sufficiently rapidly outside K, the integral
of F over thewhole of R" will be a close approximation to the volume of K.

Another strategy that has been employed in the pursuit of efficiency is to attempt
to reduce the length m of sequence (12.16), which amountsto arranging for the extreme
balls By and By, to be as close as possible in volume. In the earlier papers, the body K
is subjected to a linear transformation that allows the transformed convex body to be
sandwiched between balls whose radii differ by a factor O(n®?). By contenting them-
selves with a less demanding notion of “approximate sandwiching,” Kannan, Lovasz,
and Simonovits [KLS94b] have recently reduced this factor to O(4/n), which is best
possible. Observe that this improvement in the sandwiching ratio reduces the length of
sequence (12.16) roughly by afactor n.

Finally, much thought has gone into potentially more efficient random walks for
sampling from within K. This is an attractive line of inquiry, as the original “cubes
walk,” which only ever makes short steps, intuitively seems rather inefficient. Lovasz
and Simonovits[L S93] consider instead a“ ball walk” with continuousstate space, which
operates as follows. Suppose x € K isthe position of the walk at time t, and denote by
B(x, 8) the ball with centre x and radius §. The probability density of the position of
thewalk at timet 4 1, conditional on its position at timet being x, is uniform over the
region K N B(x, §), and zero outside. The parameter § is chosen to exploit the trade-off
discussed briefly in the context of the cubes walk. The conductance argument can be
extended to the continuous case without essential change. The ball walk savesafactor n
in the number of oracle calls; unfortunately, as the moves of the random walk are now
more complex than before, there is no saving in net time complexity (i.e., excluding

oraclecalls).
Aninteresting problem related to volume estimation isthat of approximately count-
ing contingency tables: given m+ n positive integersry, ... ,rm and ¢y, ... , cy, COM-

pute an approximation to the number of m x n non-negative integer matrices with
row-sumsry,...,rm and column-sumscy, ..., C,. This problem arises in the interpre-
tation of the results of certain kinds of statistical experiment; see, for example, Diaconis
and Efron [DES5].

It is easy to see that the contingency tables with given row- and column-sums are
in 1-1 correspondence with integer lattice points contained in an appropriately defined
polytope of dimension nm — n —m. We might hope that a sufficiently uniform distribu-
tion on lattice points could be obtained by sampling from the (continuous) convex poly-
tope and rounding to a nearby lattice point. Dyer, Kannan, and Mount [DKM95] show
that this can be done, provided that the row- and column-sums are sufficiently large;
specifically, that each sum is at least (n + mynm. The case of small row- and column-
sums remains open. There is no hope of an FPRAS for unrestricted 3-dimensional con-
tingency tables (unlessNP = RP), as Irving and Jerrum [1J94] have shown that deciding
feasibility (i.e, whether thereis at |east one realization of the contingency table) is NP-
completein 3-dimensions, even when therow- column- andfile-sumsareall either Oor 1.

OPEN PROBLEM 12.3 An elegant direct approach to sampling contingency tables
has been proposed by Diaconis. Consider the Markov chain 97tct, whose state space
is the set of all matrices with specified row and column sums, and whose transition



508 CHAPTER 12 THE MARKOV CHAIN MONTE CARLO METHOD

probabilities are defined as follows. Let the current state (matrix) be A = (a;;). Select
apair of rows (i,i’) withi #i’, and apair of columns (j, j) with j # j’, both u.ar.
Form a new matrix A’ from A by incrementing by one the array elements a;j, &/,
and decrementing by one the elements a;j., &;. Note that A’ has the same row- and
column-sums as A. If A’ is non-negative then we accept it as the next state; otherwise
the chain remains at state A. It is easy to verify that Micr is ergodic and reversible
with uniform stationary distribution. Moreover, it appears to work well in practice as
a uniform sampling procedure for contingency tables. However, its mixing time is not
known to be bounded by any polynomial in the size of the input. (For obvious reasons,
we must assume that the row- and column-sums are expressed in unary notation when
defining the input size.)

12.5.3 STATISTICAL PHYSICS

We have already seen, in Section 12.4, a detailed example of the use of the Markov
chain Monte Carlo method in statistical physics. It wasin fact in this area that the first
computational use of the technique was made, and today Markov chain simulations
related to physical systemsaccount for vast quantities of CPU time on high performance
machines. These methods, while often ingenious, are hardly ever statistically rigorous,
so the numerical results obtained from them have to be treated with some degree of
caution. One of the most exciting applications of the analytical techniques presented
here is the potentia they open up for the rigorous quantification of these methods. In
this subsection, we sketch the progress that has been made in this direction to date.

The most intensively studied model in statistical physicsis the Ising model, intro-
duced in the 1920s by Lenz and Ising as a means of understanding the phenomenon of
ferromagnetism. An instance of the Ising model is specified by giving a set of n sites, a
set of interaction energies V;; for each unordered pair of sitesi, j, a magnetic field in-
tensity B, and an inverse temperature 8. A configuration of the system defined by these
parametersis one of the 2" possible assignments o of +1 spinsto each site. The energy
of aconfiguration o is given by the Hamiltonian H (o), defined by

H(o) =— VijGiGj—BZGk.
{i.i} k

Themoreinteresting part of H (o) isthefirst sum, which consists of a contributionfrom
each pair of sites. The contribution from the pair i, j is dependent on the interaction
energy Vij, and whether the spinsat i and j are equal or unequal. The second sum has a
contributionfrom each sitei whosesign dependsonthesign of thespinati . Inphysically
realistic applications, the sites are arranged in a regular fashion in 2- or 3-dimensional
space, and V;j isnon-zero only for “adjacent” sites. From acomputational point of view,
this special structure seems difficult to exploit. For more detail on thisand other models
in statistical physics, viewed from a computational perspective, consult the survey by
Welsh [Wel90].

A central problem in the theory is evaluating the partition function Z =
Y, eXp(—BH (o)), where the sum is over al possible configurationso. Thisis anao-
gous to the monomer-dimer partition function in Section 12.4, which is aso aweighted
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sum over configurations. The significance of Z isthat it isthe normalizing factor in the
Gibbs distribution, which assigns probability exp(—8H (o)) /Z to each state (configu-
ration) o in the steady state. Other problemsrelate to the evaluation of the expectation
of certain random variablesof o, when o is sampled according to the Gibbsdistribution:
the mean magnetic moment and mean energy are two such.

When theinteraction energiesare unconstrained (thiscorrespondsto aso-called spin
glass) the partition function is hard even to approximate [JS93], so we restrict attention
to the important ferromagnetic case, where V;; > Ofor all pairs{i, j} of sites. Even here,
exact computation of the partition function is #P-complete [JS93], so it is again natu-
ral to ask whether an FPRAS exists. Jerrum and Sinclair [JS93] answered this question
in the affirmative, and in addition presented an FPRAS for the mean magnetic moment
and mean energy. Applying the Markov chain Monte Carlo method to the Ising model
required an additional twist, as the “natural” random walk on configurations, in which
two configurations are adjacent if they differ in just one spin, is not rapidly mixing.1®
Thetwist isto simulate an apparently unrelated Markov chain on a different set of con-
figurations— based on edges rather than vertices— which happensto have essentially
the same partition function as the Ising model proper. Using the canonical paths argu-
ment, it can be shown that the new, edge-based Markov chain is rapidly mixing. The
twist just described is one factor that makes this application one of the most intricate so
far devised.

In addition to the Ising model and monomer-dimer systems, other models in sta-
tistical physics that have been solved in the FPRAS sense are the six-point ice model
[MW91] and the self-avoiding walk model for linear polymers [BS85, RS94]. The for-
mer problem is again connected with matchings in a graph, but rather remotely, and a
fair amount of work is required to establish and verify the connection [MW91]. The
latter makes use of a Markov chain that is much simpler in structure to those consid-
ered here[BS85], and whose analysis requires afar less sophisticated application of the
canonical paths approach. The analysisin fact relies on a famous conjecture regarding
the behavior of self-avoiding walks: the resulting algorithm is somewhat novel in that it
either outputs reliable numerical answers, or produces a counterexampl e to the conjec-
ture[RS94].

12.5.4 MATROID BASES: AN OPEN PROBLEM

A particularly appealing open problem in this area, and one that would be very rich in
terms of consequences, is to determine useful bounds on the mixing time of the basis-
exchange Markov chain for a general matroid. (A matroid is an algebraic structure that
provides an abstract treatment of the concept of linear independence.) The states of
this Markov chain are the bases (maximum independent sets) of a given matroid, and
atransition is available from base B to base B’ if the symmetric differenceof B and B’
consistsof precisely two elementsof theground set. All transition probabilitiesareequal,
so the chain is ergodic and reversible with uniform stationary distribution.

16 A more elaborate random walk on spin configurations proposed by Swendsen and Wang [SW87]
may be rapidly mixing, but nothing rigorous is known.
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A concrete example is provided by the graphic matroid associated with an undi-
rected graph G. In this case, the bases are spanning trees of G, and a transition from
agiventree T is effected by adding a single edge (selected u.ar.) to T, thus creating a
cycle, and then breaking the cycle by deleting one of itsedges (selected u.ar.). Thebasis-
exchange Markov chainis known to be rapidly mixing for graphic matroids, and, some-
what moregenerally, for matroids satisfying acertain “ balance condition” (see Feder and
Mihail [FM92]). A proof of rapid mixing in the general case would imply the existence
of an FPRAS for a number of important problemsin combinatorial enumeration, al of
which are #P-complete, including counting connected spanning subgraphs of a graph
(network reliability), forests of given size in agraph, and independent subsets of vectors
in aset of n-vectors over GF(2).

e
THE METROPOLIS ALGORITHM AND
SIMULATED ANNEALING

o

We conclude this survey with arather different application of the Markov chain Monte
Carlo method. Like the applications we have discussed so far, Markov chain simulation
will again be used to sample from a large combinatorial set according to some desired
probability distribution. However, whereas up to now we have used this random sam-
pling to estimate the expectations of suitably defined random variables over the set, we
will now useit to optimize afunction. Thisisthe key ingredient of several randomized
search heuristicsin combinatorial optimization, the most celebrated of which is known
as simulated annealing.

Asusud, let 2 be alarge combinatorial set, which we think of now as the set of
feasible solutionsto some optimization problem. Let f : 2 — R* bean objectivefunc-
tion defined on £2; our goal is to find a solution x € £2 for which the value f (x) is
maximum (or, symmetrically, minimum). Asanillustrative example, let ustake the max-
imum cut problem. Here £2 isthe set of partitions of the vertices of a given undirected
graph G = (V, E) into two sets Sand S= V — S. Our god is to find a partition that
maximizes the number of edges between Sand S.

Here is a very general approach to problems of this kind. First, we define a con-
nected, undirected graph H on vertex set £2: this graph is often referred to as a neigh-
borhood structure. Typically, the neighborsof asolution x € £2 arecloseto x under some
measure of distancethat is natural to the combinatorial structuresin question: for exam-
ple, in the maximum cut problem, the neighbors of a particular partition (S, S) might be
all partitionsof theform (S—s, S+s) and (S+t, S—t) obtained by moving one element
across the partition. Next we construct a Markov chain in the form of a biased random
walk onthegraph H of aspecial form. Let d(x) denote the degree of vertex x in H, and
let D bean upper bound on the maximum degree. Then transitionsfrom any state x € £2
are made asfollows:

. with probability 3 let y = x; otherwise,
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Il. select y € £2 according to the distribution

z if y isaneighbor of x;
Priy)=11-9% ify=x;
0 otherwise;

[11. goto y with probability min{1, « f» =1},

Herea > 1 isafixed parameter whose role will become clear shortly. We shall refer to
thisMarkov chain as 91€(«). Note that 91€(«) aways accepts transitions to neighbors
with better valuesof f, but rejectstransitionsto poorer neighborswith a probability that
dependson «.17

Let us observe some general properties of this Markov chain. Firgt, since H is
connected, the chainisirreducible, and since all self-loop probabilitiesare non-zeroitis
aperiodic; henceit isergodic. Now define

a f(x)
Z()’
where Z(«) is anormalizing factor to make 7, a probability distribution. Thenitisan

easy matter to check that the chain is reversible with respect to 7., i.e, the transition
probabilities P (X, y) satisfy the detailed balance condition

Te(X) = forx € £2, (12.17)

7. (X)P(X,y) =7, (Y)P(y,x), fordlx,ye .

All this implies that the Markov chain converges to the stationary distribution 7. A
Markov chain of this form is known as a Metropolis process, in honor of one of its
inventors [Met53].

Now let usexaminethe stationary distribution more closely. From (12.17) itisclear
that, for any value of @ > 1, 7, isamonotonically increasing function of f (x). Henceit
favors better solutions. Moreover, the effect of this bias increases with «: asa — oo,
the distribution becomes more sharply peaked around optimal solutions. At the other
extreme, when o = 1 the distribution is uniform over £2.

Our optimization algorithm is now immediate: smply simulate the Markov chain
ME(«) for somenumber, T, of steps, starting from an arbitrary initial solution, and out-
put the best solution seen during the simulation. We shall refer to this algorithm as the
Metropolis algorithm at «. How should we choose the parameter «? For sufficiently
large T, we can view the algorithm as essentially sampling from the stationary distri-
bution 7. If we want to be reasonably sure of finding a good solution, we want to make
a small so that 7, iswell concentrated. On the other hand, intuitively, as« increasesthe
chain becomes less mobile and more likely to get stuck in local optima: indeed, in the
limitasa — oo, ME(a) sSimply becomes avery naive “randomized greedy” agorithm.
Thistradeoff suggests that we should use an intermediate value of «.

To precisely quantify the performance of the Metropolisalgorithm at a given value
of o, we would need to analyze the expected hitting time from the initial solution to the
set of optimal (or near-optimal) solutions. However, we can get an upper bound on the
time taken to find a good solution by analyzing the mixing time. Certainly, if 9&(w) is
closeto stationarity after T steps, then the probability that we find a good solution is at

1711 the case where we wish to minimise f, everything we say carries over with o replaced by o 1.
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least theweight of such solutionsin the stationary distribution .. We shall illustrate this
approach by adapting the matching example of Section 12.4, for which we have already
developed all the necessary technology.

Consider the classical optimization problem of finding a matching of maximum
cardinality in agraph. Thus £2 isthe set of all matchingsinagraph G = (V, E), and we
aretrying to maximizethefunction f : 2 — R givenby f (M) = |M|. Itiswell known
that this problem can be solved in polynomial time, but the algorithm for non-bipartite
graphs is far from trivial [EdmM6E5]. We shall show that the much simpler Metropolis
algorithm solvesthe problem for most graphs, and finds agood approximate solution for
all graphs, with high probability in polynomial time. The key to the algorithm’s success
isacarefully chosen value of the parameter «.

We have in fact aready defined a suitable Metropolis process for the maximum
matching problem: it is the Markov chain 9% acn(2) from Section 12.4. A glance at
the definition of this chain reveals that it is a Metropolis process whose neighborhood
structure is defined by edge additions, deletions, and exchanges, and with D = |E]|
and ¢ = 1. We saw in Section 12.4 that M macn(A) Qets very close to its stationary
distribution, 7, in time polynomial in A and the number of verticesin G.

Let usfirst consider the case of 2n-vertex graphs G for which the ratio mp_1/mp,
is polynomially bounded, i.e., m,_1/m, < g(n) for some fixed polynomial .18 (Of
course, for such graphs maximum matchings are perfect matchings.) As we have seen
in Section 12.5.1, this actually covers ailmost all graphs, as well as several interesting
special families such as dense graphs. We also saw in Section 12.5.1 that, if wetake A =
g(n) > my_1/my, then the weight of perfect matchingsin the stationary distribution 7,
isat least n_-lH. (see equation (12.15)). Hence, by running the Metropolis algorithm O(n)
times (or, aternatively, by increasing A by a constant factor), we can be amost certain
of finding a perfect matching. The running timefor each runis polynomial innand A =
g(n), and hence polynomial in n. The same result holds more generally for graphswith
amaximum matching of size ko, provided that my,_1/my, is polynomially bounded.

Theaboveanalysisbreaksdown for arbitrary graphsbecausethe value of A required
to find a maximum matching could be very large. However, for arbitrary graphs, we
can prove the weaker result that the Metropolis algorithm will find an approximately
maximum matching in polynomial time. Let G be an arbitrary graph, and suppose we
wish to find a matching in G of size at least k = [(1— ¢)ko], where kg is the size of
a maximum matching in G and ¢ € (0,1). We claim that, if we run the Metropolis
algorithm for a polynomial number of steps with 1 = |E|4~9)/¢, then with probability
at least n—il we will find such a matching. (Note, however, that the running time is
exponential in the accuracy parameter £ ~1.) Once again, the success probability can be
boosted by repeated trials, or by increasing A by asmall constant factor.

To justify the above claim, we use the log-concavity property of matchingsand the
fact that my, > 1 to deduce that

ko

mj_y M1\ ko—k+1

M1 = My, | | —/— > (== ) (12.18)
=k m,— ( My )

But since j-matchingsin G aresubsetsof E of size j, thereisalso the crude upper bound

18Recall that my denotes the number of k-matchingsin G.
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me_1 < |E[*"1. Hence, from (12.18) we conclude that
M1 < |E|(1—£)/s = A

My
Now we use log-concavity again to argue that, for 0 < i < k, we have mj/my <
(M_1/m* < A% 1t follows that the weight of i-matchings in the stationary dis-
tribution 7, is bounded above by the weight of the k-matchings. Hence, the probability
of being at amatching of sizek or moreis at least n_-lH. aswe claimed.

Rigorous results like this about the performance of the Metropolis algorithm on
non-trivial optimization problemsare few and far between. The above result on approx-
imating maximum matchings was obtained via a more complex argument by Sasaki
and Hajek [SH88], who also show that this result is best possible in the sense that the
Metropolis algorithm cannot be expected to find a truly maximum matching in arbitrary
graphsin polynomial time, even if the algorithm is allowed to vary the parameter « in
an arbitrarily complicated fashion. Negative results of a similar flavor for other prob-
lems can be found in [Sas91] and [Jer92]. Jerrum and Sorkin [JS93] prove a positive
result for the graph bisection problem analogousto the one abovefor finding amaximum
matching in random graphs: they show that, for almost every input graph in a suitable
random graph model, the Metropolis algorithm run at a carefully chosen value of the
parameter « will find a minimum bisection of the graph in polynomial time with high
probability. Their approach is different from the one presented here, in that they argue
directly about the hitting time rather than analyzing the mixing time as we have done.
Finally, arecent paper of Kannan, Mount, and Tayur [KM T94] shows how the M etropo-
lis algorithm can be used to efficiently find approximate solutions to a class of convex
programming problems.

We closewith abrief discussion of the popular optimization heuristic known assim-
ulated annealing, first proposed in [KGV83]. This heuristic iswidely used in combina-
torial optimization: for acomprehensive survey of experimental results, seefor example
[JAMS88, JAMS91]. Essentially, the ideaisto simulate the Metropolis processwhile at
the same time varying the parameter o according to a heuristic scheme. Thus, a Ssimu-
lated annealing algorithm is specified by a Metropolis process ME(«), together with an
increasing function o : N — [1, 00). At timet, the process makes atransition according
to ME(a(t)); we can therefore view it as a time-inhomogeneous Markov chain on 2.
After some specified number of steps, the algorithm terminates and returns the best so-
Iution encountered so far.

The function « is usually referred to as a cooling schedule, in accordance with the
interpretation of o~ as a “temperature.” Increasing o thus corresponds to decreasing
temperature, or cooling. Theterm “simulated annealing” derives from the analogy with
the physical annealing process, in which a substance such as glass is heated to a high
temperature and then gradually cooled, thereby “freezing” into a state whose energy is
locally minimum. If the cooling is done sufficiently slowly, this state will tend to be a
global energy minimum, corresponding to maximum strength of the solid.

Thismore complex processis even harder to analyze than the Metropolis algorithm
itself. Sincethe Markov chainisnot time-homogeneous, even the question of asymptotic
convergenceis non-trivial. Holley and Stroock [HS88] proved the existence of acooling
schedule that guarantees convergenceto a global optimum: however, the scheduleis so
slow that the time taken to convergeis comparable with the size of £2, which makesthe
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algorithm uncompetitive with naive exhaustive search. It remains an outstanding open
problem to exhibit a natural example in which simulated annealing with any non-trivia
cooling schedule provably outperforms the Metropolis algorithm at a carefully chosen
fixed value of «.
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APPENDIX

N

Proof of Proposition 12.3. The proof essentialy hinges on the bound
(Var f;)/(E f)? < e, whichwe established for therandomvariable f;. However, thisran-
dom variable is defined with respect to the distribution r,, , whereas our samples come
from a distribution 7;, obtained from a finite-length simulation of the Markov chain,
whose variation distance from r,, satisfies

1725, — 702, (A1)

&
I < Bor
er
We shall therefore work with the random variable i, defined analogoudly to f; ex-

cept that the matching M is selected from the distribution 7;, rather than r;,. Since f.
takesvaluesin (0, 1], its expectation E f. = p; clearly satisfies |pj — pi| < &/5€r, which

by (12.10) implies
(-g)n=n=(irg)n &
fi

Moreover, again using (12.10), the variance of f; satisfies

(Var )/ Ef)2<pt<2pt<2e (A.3)

where we have also used (A.2) crudely to deduce that p; > 5 1o

We can now compute the sample size needed to ensure a good final estimate. L et
Xi(l),.. X(S) be asequenceof Sindependent copiesof therandomvariable f; obtained
by samplmg S matchings from the distribution 77, , and let X; = §1Z X(” be the
sample mean. Clearly, EX; = Ef; = 7, and VarX; = S 1var ;. Our estlmator of
p = Z(*)~L isthe random variable X = [ 11 Xi. The expectation of this estimator is
EX=[]i_1 o = p, which by (A.2) satisfies

& R &
(1—Z>p§p§(1+z>p- (A.4)
Also, by (A.3), the variance satisfies

Var X d Var X
EX7? ZE(H (E%)Z) B
2e\'
< <1+§) 1
<exp(2er/S -1
<?/64,

provided we choose the sample size S = [130es~%r]. (Here we are using the fact that
exp(x/65) < 1+ x/64for 0 < x < 1.) Now Chebyshev’sinequality applied to X yields
6VaX 1

Pr(IX—pl> (¢/4)p) < ?m =< R
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so we have, with probability at least 3,
e\ £\ ~
(1—Z)p§X§(1+Z)p. (A5)

Combining (A.4) and (ﬁ.S) we see that, with probability at |east %, Y = X! lieswithin
ratio 1+ ¢ of p~ = Z (1), which completes the proof. [ ]



